Recursive definitions on surreal numbers

نویسنده

  • Antongiulio Fornasiero
چکیده

Let No be Conway’s class of surreal numbers. I will make explicit the notion of a function f on No recursively defined over some family of functions. Under some ‘tameness’ and uniformity conditions, f must satisfy some interesting properties; in particular, the supremum of the class ̆ x ∈ No : f (x) ≥ 0 ̄ is actually an element of No. As an application, I will prove that concatenation function x : y cannot be defined recursively in a uniform way over polynomial functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exponential-Logarithmic Equivalence Classes of Surreal Numbers

In his monograph [Gon86], H. Gonshor showed that Conway’s real closed field of surreal numbers carries an exponential and logarithmic map. Subsequently, L. van den Dries and P. Ehrlich showed in [vdDE01] that it is a model of the elementary theory of the field of real numbers with the exponential function. In this paper, we give a complete description of the exponential equivalence classes (see...

متن کامل

Integration on Surreal Numbers

The thesis concerns the (class) structure No of Conway’s surreal numbers. The main concern is the behaviour on No of some of the classical functions of real analysis, and a definition of integral for such functions. In the main texts on No, most definitions and proofs are done by transfinite recursion and induction on the complexity of elements. In the thesis I consider a general scheme of defi...

متن کامل

A finite axiomatisation of inductive-inductive definitions

Induction-induction is a principle for mutually defining data types A ∶ Set and B ∶ A→ Set. Both A and B are defined inductively, and the constructors for A can refer to B and vice versa. In addition, the constructor for B can refer to the constructor for A. Induction-induction occurs in a natural way when formalising dependent type theory in type theory. We give some examples of inductive-indu...

متن کامل

Conway names, the simplicity hierarchy and the surreal number tree

Each surreal number has a unique Conway name (or normal form) that is characteristic of its individual properties. The paper answers the following two questions that are naturally suggested by the surreal number system’s structure as a lexicographically ordered full binary tree. (i) Given the Conway name of a surreal number, what are the Conway names of its two immediate successors? (ii) Given ...

متن کامل

The Surreal Numbers as a Universal H-field

We show that the natural embedding of the differential field of transseries into Conway’s field of surreal numbers with the Berarducci-Mantova derivation is an elementary embedding. We also prove that any Hardy field embeds into the field of surreals with the Berarducci-Mantova derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005